If it's not what You are looking for type in the equation solver your own equation and let us solve it.
128x-16x^2=208
We move all terms to the left:
128x-16x^2-(208)=0
a = -16; b = 128; c = -208;
Δ = b2-4ac
Δ = 1282-4·(-16)·(-208)
Δ = 3072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3072}=\sqrt{1024*3}=\sqrt{1024}*\sqrt{3}=32\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(128)-32\sqrt{3}}{2*-16}=\frac{-128-32\sqrt{3}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(128)+32\sqrt{3}}{2*-16}=\frac{-128+32\sqrt{3}}{-32} $
| 32x-180=20-8x | | 4K-12=13-k | | 3x+21+3x-28=180 | | 4−2x·4x=64 | | -1x+2(4x+10)=6 | | 4b-4=8b+12 | | x′′+3x′+4x=-9.81 | | 5a-27=2a | | 15=7-3m | | 8y+4=3y-21 | | 1/9y-1=-2 | | 5t+8=2t-25 | | 7n^2+35n-42=0 | | 3x-2=2×+5 | | 2y+5-7=0 | | y/5+4=0 | | 15p=3p+48 | | 7+10x+x+7+9=41 | | -6+7y=78 | | 10(x-1/3)=5/12 | | 3+x=180 | | 2(5+y)=2 | | 2(-3y+9)=12 | | 5+x3=29+x | | 5(n+2)=10n-25 | | x+(3x+15)=140 | | 5x(3)=x+29 | | -19+5n=-4n+17 | | 0.2(0.4^4x)=4 | | 1/3a-8=1/2a+5 | | x+(3x+15)=150 | | 3(2+2q)=36 |